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On semi-supermanifolds

Steven Duplij

Abstract. Initially noninvertible objects are naturally arise in su-
permathematics, but it is common to deal with invertible ones only
factoring former out in some extent. We propose to reconsider
this ansatz and try to redefine such fundamental notions as su-
permanifolds, fiber bundles and homotopies using some weakening
invertibility conditions. The prefix “semi-” reflects the fact that
underlying morphisms form corresponding semigroups consisting of
a known group part and a new ideal (disjoint) noninvertible part.
We found that the absence of invertibility gives us some natural
generalization of the cocycle conditions for transition functions of
supermanifolds and fiber bundles. That can lead to construction
of noninvertible analogs of Čech cocycles and spectral sequences.
We also define semi-homotopies, which can be noninvertible and
describe mappings into the semi-supermanifolds introduced.

1. Introduction

Noninvertible extension of the notion of a supermanifold seems in-
tuitively natural in connection with the guesses made in the past con-
cerning inner noninvertibility inherent in the supermanifold theory, e.g.
“...a general SRS needs not have a body” [17], “...there may be no in-
verse projection (body map [79]) at all” [66], or “...a body may not
even exist in the most extreme examples” [12]. In particular, while
investigating noninvertible properties of superconformal symmetry [23]
it was assumed [24] the possible existence of supersymmetric objects
analogous to super Riemann surfaces, but without body, and shown
preliminary how to construct them [27]. The superconformal semi-
groups arisen belong to a new class of semigroups having unusual ab-
stract properties [28]. From other side, these investigations initiated
studies of supermatrix semigroups [25] and supermatrix representations
of semigroup bands [26].
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Noninvertibility in supermanifold theory [3, 87, 38] actually arises
from odd nilpotent elements and zero divisors of underlying Grassmann-
Banach algebras (see [42, 70, 83] for nontrivial examples).
In the infinite dimensional case there exist (topologically) quasinilpo-
tent odd elements which are not really nilpotent [71], and, moreover,
in some superalgebras one can construct pure soul elements which are
not nilpotent even topologically [69] or introduce an invertible analog
of an odd symbol [48], or use methods of nonstandard analysis [70].
Moreover, it were considered pure odd supermanifolds [76, 73], exotic
supermanifolds with nilpotent even coordinates [43] and Frobenius su-
permanifolds with nonfixed metrics [57, 32], as well as supergravity
with noninvertible vierbein [21].
We should also mention the possibility of defining a supermanifold
without the notion of topological space [61]. Other supermanifold prob-
lems with odd directions (and therefore connected with noninvertibility
in either event) are described in [3, 13, 14, 41], and a list of them is
presented in [51].

2. Standard patch definition of a supermanifold

Let us remind the standard patch definition [74, 77, 87] of a su-
permanifold M0 [79] (which differs from ordinary manifold definition
[44, 46] by “super-” terminology only). We consider a collection of su-
perdomains Uα such that M0 =

⋃
α

Uα. Then in every superdomain Uα

we take some superfunctions (coordinate maps)

ϕα : Uα → Dn|m ⊂ Rn|m,(1)

where Rn|m is a superspace in which our super “ball” lives, and Dn|m
is an open domain in Rn|m. Next we call the pair {Uα, ϕα} a local
chart and claim that the union of charts

⋃
α

{Uα, ϕα} is an atlas of a
supermanifold [20, 79, 87].
Next we introduce gluing transition functions as follows. Let Uαβ =
Uα ∩ Uβ 6= ∅ and

ϕα : Uα → Vα ⊂ Rn|m,
ϕβ : Uβ → Vβ ⊂ Rn|m.(2)

Then the above morphisms are restricted to ϕα : Uαβ → Vαβ = Vα ∩
ϕα (Uαβ) and ϕβ : Uαβ → Vβα = Vβ ∩ ϕβ (Uαβ). The maps Φαβ : Vβα →
Vαβ which are called to make the following diagram
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Uαβ Vβα

Vαβ

ϕα

ϕβ

Φαβ

(3)

to be commuted are named transition functions of a supermanifold in a
given atlas. Here we stress, first, that Uαβ ⊂M0 and Vαβ, Vβα ⊂ Rn|m.
Second, from (3) one usually concludes that

Φαβ = ϕα ◦ ϕ−1β(4)

The transition superfunctions Φαβ give us possibility to restore the
whole supermanifold from individual charts and coordinate maps. In-
deed they contain all information about the supermanifold. They may
belong to different functional classes, which gives possibility to specify
more narrow classes of manifolds and supermanifolds, for instance (su-
per)smooth, analytic, Lipschitz and others [44, 65]. Mostly the prefix
“super-” only distinguishes the patch definitions of a manifold and su-
permanifold (which gives us possibility to write it in brackets) and the
properties of Φαβ [13, 79, 20]. Here we do not discuss them in detail and
try to put minimum restrictions on Φαβ, concentrating our attention
on their abstract properties and generalizations following from them.
Additionally, from (4) it follows that transition functions satisfy the
cocycle conditions

Φ−1αβ = Φβα(5)

on Uα ∩ Uβ and
Φαβ ◦ Φβγ ◦ Φγα = 1αα(6)

on triple overlaps Uα ∩ Uβ ∩ Uγ , where 1αα def= id (Uα).
Usually [79, 74, 87] it is implied that all the maps ϕα are homeomor-

phisms, and they can be described by one-to-one invertible continuous
(super)smooth functions (i.e. one wants “to jump” in both directions
between any two intersecting domains Uα ∩ Uβ 6= ∅). First, it was
reasonable not to distinguish between Uα and D

n|m, i.e. locally su-
permanifolds are as the whole superspace Rn|m [20, 41]. However the
matter is not only in more rich fiber bundle [10, 11, 30] and sheaf
[45, 50, 49] structures due to consideration of all constructions over
underlying Grassmann algebra (or more general ones [69, 83, 87, 39]).
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The problem lies in another abstract level of the constructions, if the
invertibility conditions are weakened in some extent (see, e.g. [23, 27]).

3. Noninvertible extension of a supermanifold

Earlier there was the following common prescription: one had ready
objects (e.g. real manifolds which can be investigated almost visually
[15, 22, 81]), and then using various methods and guesses one found
restrictions on transition functions. Notwithstanding, noninvertible
functions were simply excluded (saying magic words “factorizing by
nilpotents we again derive the well-known result”) from consideration,
because of desire to be in the nearest analogy with intuitively clear and
understandable nonsupersymmetric case [44, 46, 65].
Here we go in opposite direction: we know that in supermathematics
noninvertible variables and functions do exist. Which objects could
be constructed by means of them? What gives “factorizing by non-
nilpotents”, i.e. consideration of non-group features of theory? How
changes the general abstract sense of the most important notions, e.g.
manifolds and fiber bundles? We now try to leave aside inner structure
of noninvertible objects analogous to supermanifolds and concentrate
our attention on there general abstract definitions.
We note that among ordinary functions there exist noninvertible ones
as well [54, 55], but the kind of noninvertibility considered here is very
special: it appears only due to the existence of nilpotents in under-
lying superalgebra [42, 71, 83]. So that, the noninvertible extension
of a manifold proposed below is very special and can exist due to the
presence of supersymmetry only.
Here we do not consider concrete equations and methods of their
solving, we only use the fact of their existence to reformulate some
definitions and extend well-known notions.

3.1. Definition of a semi-supermanifold. Now we formulate a patch
definition of an object analogous to supermanifold, i.e. try to weaken
demand of invertibility of coordinate maps (2). Let us consider a gener-
alized superspaceM covered by open sets Uα asM =

⋃
α

Uα. We assume

here that the maps ϕα : Uα → Vα ⊂ Rn|m are not all homeomorphisms,
i.e. among them there are noninvertible maps1.

Definition 1. A chart is a pair {U invα , ϕinvα } ,where ϕinvα is an invertible
morphism. A semi-chart is a pair {Unoninvα , ϕnoninvα }, where ϕnoninvα is a
noninvertible morphism.

1Indeed in this sense the superspace M is noninvertibly generalized, and instead
of Rn|m one can consider some its noninvertible generalization.
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Definition 2. A semi-atlas {Uα, ϕα} is a union of charts and semi-
charts

{
U invα , ϕ

inv
α

}⋃{
Unoninvα , ϕnoninvα

}
.(7)

Definition 3. A semi-supermanifold is a noninvertibly generalized su-
perspace M represented as a semi-atlas M =

⋃
α

{Uα, ϕα}.

How to define an analog of transition function? We should consider
the same diagram (3), but we cannot use (4) through noninvertibility
of some of ϕα’s.

Definition 4. Gluing semi-transition functions of a semi-supermanifold
are defined by the equations

Φαβ ◦ ϕβ = ϕα,(8)

Φβα ◦ ϕα = ϕβ.(9)

We stress that to determine Φαβ the equation (8) cannot be solved
by (4) in noninvertible case2. Instead we should find artificial methods
of its solving, e.g. as in previous subsection, expanding in superalgebra
generator series, or using abstract semigroup methods [36, 33, 52] and
consider solutions of noninvertible equations as equivalence classes.
The semi-transition functions entering in (8) and (9) are not more
mutually inverse, and the functions Φβα should now be determined not
from (5) in which the left hand side is not well defined, but from the
commutative diagram

Uαβ Vβα

Vαβ

ϕα

ϕβ

Φβα

(10)

and the equation (9) following from it. They are also can be nonin-
vertible and therefore the cocycle conditions should be modified not to
use invertible functions only.

Remark. Even in the standard case the cocycle conditions (6) for super-
manifolds are not automatically satisfied when (4) holds, and therefore
they should be imposed by hand [64].

2A semigroup analog of that is the difference between inverse and regular ele-
ments [35, 33].
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Thus, instead of (5) and (6) we have

Conjecture 5. The semi-transition functions Φαβ of a semi-supermanifold
satisfy the following relations

Φαβ ◦ Φβα ◦ Φαβ = Φαβ(11)

on Uα ∩ Uβ overlaps and
Φαβ ◦ Φβγ ◦ Φγα ◦ Φαβ = Φαβ,(12)

Φβγ ◦ Φγα ◦ Φαβ ◦ Φβγ = Φβγ ,(13)

Φγα ◦ Φαβ ◦ Φβγ ◦ Φγα = Φγα(14)

on triple overlaps Uα ∩ Uβ ∩ Uγ and
Φαβ ◦ Φβγ ◦ Φγρ ◦ Φρα ◦ Φαβ = Φαβ,(15)

Φβγ ◦ Φγρ ◦ Φρα ◦ Φαβ ◦ Φβγ = Φβγ ,(16)

Φγρ ◦ Φρα ◦ Φαβ ◦ Φβγ ◦ Φγρ = Φγρ,(17)

Φρα ◦ Φαβ ◦ Φβγ ◦ Φγρ ◦ Φρα = Φρα(18)

on Uα ∩ Uβ ∩ Uγ ∩ Uρ .
Here the first relation (11) is called to generalize the first cocycle
condition (5), while other relations correspond (6).

Definition 6. We call (11)–(18) tower relations.

Definition 7. A semi-supermanifold is called reflexive if, in addition
to (11)–(18), the semi-transition functions satisfy to the reflexivity con-
ditions

Φβα ◦ Φαβ ◦ Φβα = Φβα(19)

on Uα ∩ Uβ overlaps and
Φαγ ◦ Φγβ ◦ Φβα ◦ Φαγ = Φαγ ,(20)

Φγβ ◦ Φβα ◦ Φαγ ◦ Φγβ = Φγβ,(21)

Φβα ◦ Φαγ ◦ Φγβ ◦ Φβα = Φβα(22)

on triple overlaps Uα ∩ Uβ ∩ Uγ and
Φαρ ◦ Φργ ◦ Φγβ ◦ Φβα ◦ Φαρ = Φαρ,(23)

Φργ ◦ Φγβ ◦ Φβα ◦ Φαρ ◦ Φργ = Φργ ,(24)

Φγβ ◦ Φβα ◦ Φαρ ◦ Φργ ◦ Φγβ = Φγβ,(25)

Φβα ◦ Φαρ ◦ Φργ ◦ Φγβ ◦ Φβα = Φβα(26)

on Uα ∩ Uβ ∩ Uγ ∩ Uρ .
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Remark. One could think that the reflexivity conditions differ from
(11)–(18) by index permutations only. This is true. But the functions
Φαβ entering in (11)–(18) and in (19)–(26) are the same, and therefore
the latter are independent equations imposed on Φαβ.

Remark. In any actions with noninvertible functions Φαβ we are not al-
lowed to cancel, because the semigroup of Φαβ’s is a semigroup without
cancellation, and we are forced to exploit the corresponding methods
[18, 34, 56, 86].

Corollary 8. The relations (11)–(26) satisfy identically in the stan-
dard invertible case [20, 41, 87, 79], i.e. when the conditions (4), (5)
and (6) hold valid.

Remark. The equations (8)–(9) defining the semi-transition functions
Φαβ can have no unique solutions, and so in that case Φαβ should be
considered as corresponding sets of functions.

Conjecture 9. The functions Φαβ satisfying the relations (11)–(26)
can be viewed as some noninvertible generalization of the transition
functions as cocycles in the Čech cohomology of coverings [53, 84].

3.2. Orientation of semi-supermanifolds. It is well known that
orientation of ordinary manifolds is determined by the Jacobian sign
of transition functions Φαβ written in terms of local coordinates on
Uα ∩Uβ overlaps [44, 46]. Since this sign belong to Z2 , there exist two
orientations on Uα. Two overlapping charts are consistently oriented
(or orientation preserving) if Φαβ has positive Jacobian, and a mani-
fold is orientable if it can be covered by such charts, thus there are two
kinds of manifolds: orientable and nonorientable [44, 46]. In supersym-
metric case the role of Jacobian plays Berezinian [7] which has a “sign”
belonging to Z2 ⊕ Z2 [88, 85], and so there are four orientations on Uα
and five corresponding kinds of supermanifold orientability [61, 82].

Definition 10. In case a nonvanishing Berezinian of Φαβ is nilpotent
(and so has no definite sign in the previous sense) there exists additional
nilpotent orientation on Uα of a semi-supermanifold.

A degree of nilpotency of Berezinian allows us to classify semi-
supermanifolds having nilpotent orientability.

3.3. Obstructedness and semi-supermanifolds. The semi-supermanifolds
defined above belong to a class of so called obstructed semi-supermanifolds
in the following sense. Let us rewrite (4), (5) and (6) as the infinite
series

n = 1 : Φαα = 1αα,(27)
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n = 2 : Φαβ ◦ Φβα = 1αα,(28)

n = 3 : Φαβ ◦ Φβγ ◦ Φγα = 1αα,(29)

n = 4 : Φαβ ◦ Φβγ ◦ Φγδ ◦ Φδα = 1αα(30)

· · · · · ·

Definition 11. A semi-supermanifold is called obstructed if some of
the cocycle conditions (27)–(30) are broken.

Remark. The introduced notion of obstructed manifold should not be
mixed with the notion of obstruction for ordinary manifolds [5] and
supermanifolds [7] or obstruction to extensions [53] and in the theory
of characteristic classes [60, 40].

In some cases it can happen that starting from some n = nm all
higher cocycle conditions hold valid.

Definition 12. Obstructedness degree of a semi-supermanifold is a
maximal nm for which the cocycle conditions (27)–(30) are broken. If

all of them hold valid, then nm
def
= 0.

Corollary 13. Ordinary manifolds (with invertible transition functions)
have vanishing obstructedness, and the obstructedness degree for them
is equal to zero, i.e. nm = 0.

Conjecture 14. The obstructed semi-supermanifolds may have non-
vanishing ordinary obstruction which can be calculated extending the
standard methods [7] to the non-invertible case.

Therefore, using the obstructedness degree nm, we have possibility
to classify semi-supermanifolds properly.

Remark. In general, semi-supermanifolds can be defined by algebra of
semi-transition functions only.

In search of some analogies we can compare semi-supermanifolds
with supernumbers as follows
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Supernumbers Semi-supermanifolds

Ordinary nonzero numbers
(invertible)

Ordinary manifolds (tran-
sition functions are invert-
ible)

Supernumbers having a
nonvanishing body part
(invertible)

Supermanifolds (transition
functions are invertible)

Pure soul supernumbers
without a body part
(noninvertible)

Obstructed semi-supermani-
folds (transition functions are
noninvertible)

Further consideration concerns the well-known fact [20, 58] that the
pure soul supernumbers do exist only in the presence of odd nilpotent
directions [68, 74, 75].

Remark. Obstructed semi-supermanifolds have nonzero odd dimension.

Moreover, obviously the pure soul supernumbers do not contain
unity.

Remark. Obstructed semi-supermanifolds cannot have identity semi-
transition functions.

As possible example of semi-transition functions of obstructed semi-
supermanifolds one can consider the twisting parity of tangent space
transformations introduced in [23, 27]. Objects obtained in this way
can be viewed as noninvertible analogs of super Riemann surfaces [17],
which will be investigated in more detail elsewhere.

3.4. Tower identity semigroup. Let us consider a series of the self-

maps e
(n)
αα : Uα → Uα of a semi-supermanifold defined as

e(1)αα = Φαα,(31)

e(2)αα = Φαβ ◦ Φβα,(32)

e(3)αα = Φαβ ◦ Φβγ ◦ Φγα,(33)

e(4)αα = Φαβ ◦ Φβγ ◦ Φγδ ◦ Φδα(34)

· · · · · ·
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Definition 15. We will call e
(n)
αα ’s tower identities.

From (27)–(30) it follows

Assertion 16. For ordinary supermanifolds all tower identities coin-
cide with the usual identity map

e(n)αα = 1αα.(35)

Remark. In the trivial case, when all Φαβ are identity maps, it is obvi-
ous that the relations (31)-(34) satisfy identically.

The obstructedness degree can be treated as a maximal n = nm
for which tower identities differ from the identity, i.e. (35) is broken.
So the tower identities give the numerical measure of distinction of
a semi-supermanifold from an ordinary supermanifold. Being an im-
portant inner characteristic the tower identities (31)–(34) play a deep
fundamental role in description of semi-supermanifolds. Therefore, we
will study some of their properties in detail.

Proposition 17. The tower identities are units for the semi-transition
functions

e(n)αα ◦ Φαβ = Φαβ,(36)

Φαβ ◦ e(n)ββ = Φαβ.(37)

Proof. It follows directly from the tower relations (11)–(18) and the
definition (11)–(18).

Proposition 18. The tower identities are idempotents

e(n)αα ◦ e(n)αα = e(n)αα .(38)

Proof. We prove the statement for n = 2 and for other n it can be
proved by induction. We write (38) as

e(2)αα ◦ e(2)αα = e(2)αα ◦ Φαβ ◦ Φβα =
(
e(2)αα ◦ Φαβ

) ◦ Φβα.
Then using (36) we obtain(

e(2)αα ◦ Φαβ
) ◦ Φβα = Φαβ ◦ Φβα = e(2)αα.

Remark. The functional nonsupersymmetric equations of the above
kind were studied in [6].
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Definition 19. Conjugate tower identities correspond to the same
partition of the semi-supermanifold and consists of the semi-transition
functions taken in opposite order

ẽ(1)αα = e
(1)
αα,(39)

ẽ(2)αα = e
(2)
αα,(40)

ẽ(3)αα = Φαγ ◦ Φγβ ◦ Φβα,(41)

ẽ(4)αα = Φαδ ◦ Φδγ ◦ Φγβ ◦ Φβα(42)

· · · · · ·
The conjugate tower identities play the role of tower identities, but
for reflexivity conditions (19)–(26). By analogy with (36)–(37) we have

Proposition 20. The conjugate tower identities are reflexive units for
the semi-transition functions

ẽ
(n)
ββ ◦ Φβα = Φβα,(43)

Φβα ◦ ẽ(n)αα = Φβα.(44)

Proposition 21. For the same partition the conjugate tower identities
annihilate the tower identities in the following sense

e(n)αα ◦ ẽ(n)αα = e(2)αα.(45)

Proof. Let us consider the case n = 3. Using the definitions we derive

e(3)αα ◦ ẽ(3)αα = Φαβ ◦ Φβγ ◦ Φγα ◦ Φαγ ◦ Φγβ ◦ Φβα
= Φαβ ◦ Φβγ ◦ (Φγα ◦ Φαγ) ◦ Φγβ ◦ Φβα = Φαβ ◦ Φβγ ◦ e(2)γγ ◦ Φγβ ◦ Φβα
= Φαβ ◦ (Φβγ ◦ Φγβ) ◦ Φβα = Φαβ ◦ e(2)ββ ◦ Φβα = Φαβ ◦ Φβα = e(2)αα.
For other n the statement can be proved by induction.

Definition 22. A semi-supermanifold is nice (see, e.g. [2]), if the
tower identities do not depend on a given partition.

The multiplication of the tower identities of a nice semi-supermanifold
can be defined as follows

e(n)αα ◦ e(m)αα = e(n+m)αα .(46)

Assertion 23. The multiplication (46) is associative.

Therefore, we are able to give
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Definition 24. The tower identities of a nice semi-supermanifold form
a tower semigroup under the multiplication (46).

So we obtained a quantitative description of inner noninvertibility
properties of semi-supermanifolds.

Conjecture 25. The introduced tower semigroup plays the same prin-
cipal role for semi-supermanifolds as the fundamental group for ordi-
nary manifolds [29, 53, 84].

3.5. Semi-commutative diagrams and n-regularity. The above
constructions have the general importance for any set of noninvertible
mappings.

Remark. The extension of n = 2 cocycle given by (11) can be viewed
as some analogy with regular [31, 1, 16] or pseudoinverse [62] elements
in semigroups or generalized inverses in matrix theory [59, 67, 78],
category theory [19] and theory of generalized inverses of morphisms
[63].

The relations (12)–(18) and with other n can be considered as non-
invertible analogue of regularity for higher cocycles. Therefore, by
analogy with (11)–(18) it is natural to formulate the general

Definition 26. An noninvertible mapping Φαβ is n-regular, if it sat-
isfies to the following conditions

n+1︷ ︸︸ ︷
Φαβ ◦ Φβγ ◦ . . . ◦ Φρα ◦ Φαβ= Φαβ + permutations(47)

on overlaps

n︷ ︸︸ ︷
Uα ∩ Uβ ∩ . . . ∩ Uρ.

The formula (11) describes 3-regular mappings, the relations (12)–
(14) correspond to 4-regular ones, and (15)–(18) give 5-regular map-
pings.

Remark. The 3-regularity coincides with the ordinary regularity.

Another definition of n-regularity can be given by the formulas (36)–
(37).
The higher regularity conditions change dramatically the general di-
agram technique of morphisms, when we turn to noninvertible ones.
Indeed, the commutativity of invertible morphism diagrams is based
on the relations (27)–(30), i.e. on the fact that the tower identities
are ordinary identities (35). When morphisms are noninvertible (a
semi-supermanifold has a nonvanishing obstructedness), we cannot “re-

turn to the same point”, because in general e
(n)
αα 6= 1αα, and we have
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to consider “nonclosed” diagrams due to the fact that the relation

e
(n)
αα ◦ Φαβ = Φαβ is noncancellative now.
Summarizing the above statements we propose the following intu-
itively consistent changing of the standard diagram technique as ap-
plied to noninvertible morphisms. In every case we get a new arrow
which corresponds to the additional multiplier in (36).
Thus, for n = 2 we obtain

Invertible morphisms

Φαβ

Φβα

=⇒

Noninvertible morphisms

Φβα

Φαβ
n=2

which describes the transition from (28) to (11) and presents the ordi-
nary regularity condition for morphisms [19, 63]. The most intriguing
semicommutative diagram is the triangle one

Invertible morphisms Noninvertible morphisms

Φαβ

Φγα
=⇒ + permutations

Φβγ Φγα

Φαβ

Φβγ
n=3

which generalizes the cocycle condition (6).
By analogy we can write higher n-regularity semicommutative dia-
grams, which can be considered in framework of generalized categories
[9, 47].

4. Noninvertibility and semi-superbundles

A similar approach can be applied to the noninvertible extension of
super fiber bundles [30, 4], while defining them globally in terms of
open coverings and transition functions [10].
Following the standard definitions [60, 65, 37] and weakening invert-
ibility we now construct new objects analogous to fiber bundles.

4.1. Definition of semi-superbundles. Let E and M be a total
(bundle) superspace and base semi-supermanifold respectively, and π :
E → M be a semi-projection map which is not necessarily invertible
(but can be smooth). Denote by Fb the set of points of E that are
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mapped to b ∈ M (a pre-image of b ), i.e. the semi-fiber over b is
Fb
def
= {x ∈ E | π (x) = b}. Then, F = ⋃Fb is a semi-fiber.

Definition 27. A semi-superbundle is L def= (E,M, F, π) .
A section s : M → F of the fiber bundle (E,M, F, π) is usually
defined by π (s (b)) = b which in the form π◦s = 1M is very similar to (5)
and (28) and holds valid for invertible maps π and s only. Therefore, a
very few ordinary nontrivial fiber bundles admit corresponding sections
[60].
Thus, using analogy with (11), we come to the following

Definition 28. A semi-section of the semi-superbundle L = (E,M, F, π)
is defined by

π ◦ s ◦ π = π.(48)

A reflexive semi-section satisfies to the additional condition

srefl ◦ π ◦ srefl = srefl.(49)

Let π̃ : M × F → M is the canonical semi-projection on the first
factor π̃ (b, f) = b, f ∈ F , then π̃ gives rise to a product fiber bundle.
If λ : E →M× F is a morphism (called a trivialization), then π̃ ◦ λ =
π , and the semi-superbundle L = (E,M, F, π) is trivial. If there
exists a continuous map η : M → F , then the semi-superbundle
(M× F,M, F, π̃) admits the section s :M→M× F given by s (b) =
(b, η (b)).

Let Eα
def
= {x ∈ E | πα (x) = b, b ∈ Uα ⊂M} (here we do not use

the standard notion π−1 (Uα) for Eα intentionally, because now πα is
allowed to be noninvertible), where πα : Eα → Uα is a restriction,

i.e. πα
def
= π |Uα . Then the semi-superbundle L = (E,M, F, π), is

locally trivial, if ∀b ∈M ∃Uα 3 b such that there exists the trivializing
morphisms λα : Eα → Uα × F satisfying π̃α ◦ λα = πα. That is, the
diagram

Eα Uα × F

Uα

πα

λα

π̃α

(50)

commutes.
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Definition 29. A semi-section sα of a locally trivial semi-superbundle
L is given by the maps sα : Uα → E which satisfy the compatibility
conditions

λα ◦ sα |b= λβ ◦ sβ |b, b ∈ Uα ∩ Uβ.(51)

Now let {Uα, λα} be a trivializing covering of π such that
⋃
α

Uα =M

and Uα ∩ Uβ 6= ∅ ⇒ Eα ∩ Eβ 6= ∅. Then we demand the trivializing
morphisms λα to be agree, which means that the diagrams

Eα ∩ Eβ Uα ∩ Uβ × F

Uα ∩ Uβ × F
λα

λβ

Λαβ

(52)

and

Eα ∩ Eβ Uα ∩ Uβ × F

Uα ∩ Uβ × F
λα

λβ

Λβα

(53)

should commute, where Λαβ and Λβα are maps acting along a semi-fiber
F .

Definition 30. Gluing semi-transition functions Λαβ of a locally triv-
ial semi-superbundle L = (E,M, F, π) are defined by the equations

Λαβ ◦ λβ = λα,(54)

Λβα ◦ λα = λβ.(55)

Conjecture 31. The semi-transition functions of a semi-superbundle
L satisfy the following relations

Λαβ ◦ Λβα ◦ Λαβ = Λαβ(56)

on Uα ∩ Uβ overlaps and
Λαβ ◦ Λβγ ◦ Λγα ◦ Λαβ = Λαβ,(57)

Λβγ ◦ Λγα ◦ Λαβ ◦ Λβγ = Λβγ,(58)

Λγα ◦ Λαβ ◦ Λβγ ◦ Λγα = Λγα(59)
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on triple overlaps Uα ∩ Uβ ∩ Uγ and
Λαβ ◦ Λβγ ◦ Λγρ ◦ Λρα ◦ Λαβ = Λαβ,(60)

Λβγ ◦ Λγρ ◦ Λρα ◦ Λαβ ◦ Λβγ = Λβγ ,(61)

Λγρ ◦ Λρα ◦ Λαβ ◦ Λβγ ◦ Λγρ = Λγρ,(62)

Λρα ◦ Λαβ ◦ Λβγ ◦ Λγρ ◦ Λρα = Λρα(63)

on Uα ∩ Uβ ∩ Uγ ∩ Uρ .
Definition 32. A semi-superbundle L is called reflexive if, in addi-
tion to (56)-(63), the semi-transition functions satisfy to the reflexivity
conditions

Λβα ◦ Λαβ ◦ Λβα = Λβα(64)

on Uα ∩ Uβ overlaps and
Λαγ ◦ Λγβ ◦ Λβα ◦ Λαγ = Λαγ ,(65)

Λγβ ◦ Λβα ◦ Λαγ ◦ Λγβ = Λγβ,(66)

Λβα ◦ Λαγ ◦ Λγβ ◦ Λβα = Λβα(67)

on triple overlaps Uα ∩ Uβ ∩ Uγ and
Λαρ ◦ Λργ ◦ Λγβ ◦ Λβα ◦ Λαρ = Λαρ,(68)

Λργ ◦ Λγβ ◦ Λβα ◦ Λαρ ◦ Λργ = Λργ ,(69)

Λγβ ◦ Λβα ◦ Λαρ ◦ Λργ ◦ Λγβ = Λγβ,(70)

Λβα ◦ Λαρ ◦ Λργ ◦ Λγβ ◦ Λβα = Λβα(71)

on Uα ∩ Uβ ∩ Uγ ∩ Uρ .
For a fixed b ∈ Uα ∩ Uβ gluing transition function Λαβ describe
morphisms of a semi-fiber F to itself by the condition

Λαβ : (b, f)→ (b, Lαβf) ,(72)

where Lαβ : Uα ∩Uβ → F and f ∈ F . The functions Lαβ satisfy to the
generalized cocycle conditions similar to (56)–(71).

Remark. It is well-known that sections and transition functions of an
ordinary fiber bundle [37, 46] and superbundle [85] can be noninvert-
ible even in the standard case. But that kind of noninvertibility has
principally different nature comparing, as, e.g. (super)manifolds and
semi-supermanifolds introduced above.
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Remark. It can be compared with the possible noninvertibility of ordi-
nary functions [55, 80] and the noninvertibility of superfunctions which
takes place due to the presence of nilpotents and zero divisors.

The standard transition functions are implied to be homeomorphisms
and sections should be in 1-1 correspondence with maps from the base
to the fiber [72, 75]. Our definitions (11)-(26) and (48)-(71) extend
them, allowing to include in consideration properly noninvertible su-
perfunctions as well.

4.2. Morphisms of semi-superbundles. Let L = (E,M, F, π) and
L′ = (E ′,M′, F ′, π′) be two semi-superbundles.
Definition 33. A semi-superbundle morphism L f→ L′ consists of two
morphisms f = (fE, fM) , where fE : E → E ′ and fM : M → M′
,satisfying fM ◦ π = π′ ◦ fE such that the diagram

E

M

E ′

M′

π

fE

fM

π′

(73)

is commutative.

Let Eb = {x ∈ E | π (x) = b, b ∈ U ⊂M} , then fE (Eb) ⊂ E ′fM(b) for
each b, and so the semi-fiber over b ∈M is carried into the semi-fiber
over f (b) ∈ M′ by fE being a fiber morphism. If a semi-superbundle
has a section, fE acts as follows s (b)→ s′ (fM (b)).
In most applications of fiber bundles the morphism fM is identity,

and f0 = (fE, id ) is called B-morphism [37]. Nevertheless, in case of
semi-superbundles an opposite extreme situation can take place, when
fM is a noninvertible morphism.
For each fixed b ∈ M there exist trivializing maps λ : Eb → U × F
and λ′ : EfM(b) → U ′ × F ′ , fM (U) ⊂ U ′ which lead to a map of
semi-fibers hb determined by the commutative diagram

Eb

U × F

E ′fM(b)

U ′ × F ′
λ λ′

fE (b)

hb
(74)
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To describe a semi-superbundle morphism L f→ L′ locally we choose
open coveringsM =

⋃
α

Uα andM
′ =
⋃
α

U ′α′ together with trivializations

λα and λ
′
α′ (see (50)). Then the connection between semi-transition

functions Λαβ and Λ
′
α′β′ (54)–(55) of two semi-superbundles L and L′

can be found from the commutative diagram

Uαβ × F

U ′α′β′ × F ′

Uαβ × F

U ′α′β′ × F ′
hα hβ

Λαβ

Λ′α′β′
(75)

where morphisms hα are defined by the diagram

E

Uα × F

E ′

U ′α′ × F ′
λα λ′α′

fE

hα
(76)

From (75) we have the relation between semi-transition functions

hα ◦ Λαβ = Λ′α′β′ ◦ hβ(77)

which holds valid for noninvertible hα as well, while in the invertible
case [37, 46] the equation (77) is solved with respect to Λ′α′β′ , as fol-
lows Λ′α′β′ = hα ◦ Λαβ ◦ h−1β (it can be considered as an equivalence
of cocycles). However, in general (77) is a system of superequations
which should be solved by the standard [7] or extended [8] methods of
superanalysis.
Let M admits two trivializing coverings {Uα, λα} and {U ′α′ , λ′α′}. In
general they are not connected and semi-transition functions Λαβ and
Λ′α′β′ are independent. However, if M is the base superspace for two
semi-superbundles L and L′ which are connected by a B-morphism
L f0→ L′ , then Λαβ and Λ′α′β′ should agree properly.
Proposition 34. The semi-transition functions Λαβ and Λ

′
α′β′ agree if

there exist additional maps Λ̃α′β : U
′
α′∩Uβ and Λ̃αβ′ : Uα∩U ′β′ connected

between themselves by the relations

Λ̃α′β ◦ Λ̃βα′ ◦ Λ̃α′β = Λ̃α′β(78)
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on U ′α′ ∩ Uβ and
Λ̃αβ′ ◦ Λ̃β′α ◦ Λ̃αβ′ = Λ̃αβ′(79)

on Uα ∩ U ′β′ overlaps.
Then the agreement conditions for Λαβ and Λ

′
α′β′ are

Λ̃α′β ◦ Λβγ ◦ Λ̃γα′ ◦ Λ̃α′β = Λ̃α′β,(80)

Λβγ ◦ Λ̃γα′ ◦ Λ̃α′β ◦ Λβγ = Λβγ ,(81)

Λ̃γα′ ◦ Λ̃α′β ◦ Λβγ ◦ Λ̃γα′ = Λ̃γα′(82)

on triple overlaps U ′α′ ∩ Uβ ∩ Uγ and
Λ′α′β′ ◦ Λ̃β′γ ◦ Λ̃γα′ ◦ Λ′α′β′ = Λ′α′β′ ,(83)

Λ̃β′γ ◦ Λ̃γα′ ◦ Λ′α′β′ ◦ Λ̃β′γ = Λ̃β′γ,(84)

Λ̃γα′ ◦ Λ′α′β′ ◦ Λ̃β′γ ◦ Λ̃γα′ = Λ̃γα′(85)

on U ′α′ ∩ U ′β′ ∩ Uγ overlaps. Then
Λ̃α′β ◦ Λβγ ◦ Λγρ ◦ Λ̃ρα′ ◦ Λ̃α′β = Λ̃α′β,(86)

Λβγ ◦ Λγρ ◦ Λ̃ρα′ ◦ Λ̃α′β ◦ Λβγ = Λβγ ,(87)

Λγρ ◦ Λ̃ρα′ ◦ Λ̃α′β ◦ Λβγ ◦ Λγρ = Λγρ,(88)

Λ̃ρα′ ◦ Λ̃α′β ◦ Λβγ ◦ Λγρ ◦ Λ̃ρα′ = Λ̃ρα′(89)

on U ′α′ ∩ Uβ ∩ Uγ ∩ Uρ and
Λ′α′β′ ◦ Λ̃β′γ ◦ Λγρ ◦ Λ̃ρα′ ◦ Λ̃αβ′ = Λ′α′β′ ,(90)

Λ̃β′γ ◦ Λγρ ◦ Λ̃ρα′ ◦ Λ′α′β′ ◦ Λ̃β′γ = Λ̃β′γ ,(91)

Λγρ ◦ Λ̃ρα′ ◦ Λ′α′β′ ◦ Λ̃β′γ ◦ Λγρ = Λγρ,(92)

Λ̃ρα′ ◦ Λ′α′β′ ◦ Λ̃β′γ ◦ Λγρ ◦ Λ̃ρα′ = Λ̃ρα′(93)

on U ′α′ ∩ U ′β′ ∩ Uγ ∩ Uρ and
Λ′α′β′ ◦ Λ′β′γ′ ◦ Λ̃γ′ρ ◦ Λ̃ρα′ ◦ Λ′α′β′ = Λ′α′β′ ,(94)

Λ′β′γ′ ◦ Λ̃γ′ρ ◦ Λ̃ρα′ ◦ Λ′α′β′ ◦ Λ̃β′γ = Λ̃β′γ,(95)

Λ̃γ′ρ ◦ Λ̃ρα′ ◦ Λ′α′β′ ◦ Λ′β′γ′ ◦ Λ̃γ′ρ = Λ̃γ′ρ,(96)
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Λ̃ρα′ ◦ Λ′α′β′ ◦ Λ′β′γ′ ◦ Λ̃γ′ρ ◦ Λ̃ρα′ = Λ̃ρα′(97)

on U ′α′ ∩ U ′β′ ∩ U ′γ′ ∩ Uρ.
Proof. Construct a sum of trivializing coverings {Uα, λα} and {U ′α′ , λ′α′}
and then use (56)–(63).

Proposition 35. The semi-transition functions Λαβ and Λ
′
α′β′ reflex-

ively agree if there exist additional reflexive maps Λ̃α′β : U
′
α′ ∩ Uβ and

Λ̃αβ′ : Uα∩U ′β′ connected between themselves (in addition to (78)–(79))
by the reflexive relations

Λ̃βα′ ◦ Λ̃α′β ◦ Λ̃βα′ = Λ̃βα′(98)

on U ′α′ ∩ Uβ and
Λ̃β′α ◦ Λ̃αβ′ ◦ Λ̃β′α = Λ̃β′α(99)

on Uα ∩ U ′β′ overlaps. The reflexive semi-transition functions Λαβ and
Λ′α′β′ should satisfy (in addition to (80)–(97)) the following reflexivity
agreement relations

Λ̃α′γ ◦ Λγβ ◦ Λ̃βα′ ◦ Λ̃α′γ = Λ̃α′γ ,(100)

Λγβ ◦ Λ̃βα′ ◦ Λ̃α′γ ◦ Λγβ = Λγβ,(101)

Λ̃βα′ ◦ Λ̃α′γ ◦ Λγβ ◦ Λ̃βα′ = Λ̃βα′(102)

on U ′α′ ∩ Uβ ∩ Uγ and
Λ̃α′γ ◦ Λ̃γβ′ ◦ Λ′β′α′ ◦ Λ̃α′γ = Λ̃α′γ,(103)

Λ̃γβ′ ◦ Λ′β′α′ ◦ Λ̃α′γ ◦ Λ̃γβ′ = Λ̃γβ′ ,(104)

Λ′β′α′ ◦ Λ̃α′γ ◦ Λ′γβ′ ◦ Λ′β′α′ = Λ′β′α′(105)

on U ′α′ ∩ U ′β′ ∩ Uγ overlaps. Then
Λ̃α′ρ ◦ Λργ ◦ Λγβ ◦ Λ̃βα′ ◦ Λ̃α′ρ = Λ̃α′ρ,(106)

Λργ ◦ Λγβ ◦ Λ̃βα′ ◦ Λ̃α′ρ ◦ Λργ = Λργ ,(107)

Λγβ ◦ Λ̃βα′ ◦ Λ̃α′ρ ◦ Λργ ◦ Λγβ = Λγβ,(108)

Λ̃βα′ ◦ Λ̃α′ρ ◦ Λργ ◦ Λγβ ◦ Λ̃βα′ = Λ̃βα′(109)

on U ′α′ ∩ Uβ ∩ Uγ ∩ Uρ and
Λ̃α′ρ ◦ Λργ ◦ Λ̃γβ′ ◦ Λ′β′α′ ◦ Λ̃α′ρ = Λ̃α′ρ,(110)
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Λργ ◦ Λ̃γβ′ ◦ Λ′β′α′ ◦ Λ̃α′ρ ◦ Λργ = Λργ,(111)

Λ̃γβ′ ◦ Λ′β′α′ ◦ Λ̃α′ρ ◦ Λργ ◦ Λ̃γβ′ = Λ̃γβ′ ,(112)

Λ′β′α′ ◦ Λ̃α′ρ ◦ Λργ ◦ Λ̃γβ′ ◦ Λ′β′α′ = Λ′β′α′(113)

on U ′α′ ∩ U ′β′ ∩ Uγ ∩ Uρ and
Λ̃α′ρ ◦ Λ̃ργ′ ◦ Λ′γ′β′ ◦ Λ′β′α′ ◦ Λ̃α′ρ = Λ̃α′ρ,(114)

Λ̃ργ′ ◦ Λ′γ′β′ ◦ Λ′β′α′ ◦ Λ̃α′ρ ◦ Λ̃ργ′ = Λ̃ργ′ ,(115)

Λ′γ′β′ ◦ Λ′β′α′ ◦ Λ̃α′ρ ◦ Λ̃ργ′ ◦ Λ′γ′β′ = Λ′γ′β′ ,(116)

Λ′β′α′ ◦ Λ̃α′ρ ◦ Λ̃ργ′ ◦ Λ′γ′β′ ◦ Λ′β′α′ = Λ′β′α′(117)

on U ′α′ ∩ U ′β′ ∩ U ′γ′ ∩ Uρ.
Analogously we can define and study a principal and associated semi-
superbundles with a structure semigroup.

5. Noninvertibility and semi-homotopies

Here we briefly dwell on some possibilities to extend the notion of
homotopy on continuous noninvertible mappings.
A homotopy [29, 53] is a continuous mapping between two maps
f : X → Y and g : X → Y in the space C (X,Y ) of maps X → Y
such that γt=0 (x) = f (x) , γt=1 (x) = g (x). Such maps are called ho-
motopic. In other words [84] a homotopy from X to Y is a continuous
function Γ : X × I → Y where I = [0, 1] is a unit interval. For a fixed
t ∈ I one has stages γt : X → Y defined by γt (x) = Γ (x, t). The
relation of homotopy divides C (X,Y ) into a set of equivalent classes
π (X,Y ) called homotopy classes which are a set of connected com-
ponents of C (X,Y ). Therefore, π (∗, Y ) (∗ is a point) the homotopy
classes correspond to connected components of Y . If C (X,Y ) is con-
nected, then the homotopy between f (x) and g (x) can be chosen as
their average, i.e.

γt (x) = tf (x) + (1− t) g (x) .(118)

Two maps f and g are homotopically equivalent if f ◦ g and g ◦ f are
homotopic to the identity.
Now let X and Y are supermanifolds in some of the definitions
[13, 17, 79] or semi-supermanifold in our definition given above. Then
there exist a possibility to extend the notion of homotopy. The idea
is in extending the definition of the parameter t. In the standard case
the unit interval I = [0, 1] was taken for simplicity, because any two
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intervals on a real axis are homeomorphic, and so they are topologically
equal.
In supercase the situation is totally different. Let X and Y are
defined over Λ , a commutative Z2-graded superalgebra admitting a
decomposition into direct sum Λ = Λ0 ⊕ Λ1 of the even Λ0 and odd
Λ1 parts and into the direct sum Λ = B⊕ S of the body B and soul S
(see [74, 79] for details). The body map ε : Λ → B can be viewed as
discarding all nilpotent superalgebra generators, which gives a number
part [14]. So we have three topologically disjoint cases:

1. The parameter t ∈ Λ0 is even and has a body, i.e. ε (t) 6= 0.
2. The parameter t ∈ Λ0 is even and has no body, i.e. ε (t) = 0.
3. The parameter τ ∈ Λ1 is odd (any odd element has no body).
The first choice can be reduced to the standard case [22, 29] by
means of a corresponding homeomorphism, and such t can always be
considered in the unit interval I = [0, 1] . However, the following two
possibilities are topologically disjoint from the first one and between
themselves.

Definition 36. An even semi-homotopy between two supermaps f :
X → Y and g : X → Y is a noninvertible (in general) mapping
X → Y depending on a nilpotent bodyless even parameter t ∈ Λ0 and
two bodyless even constants a, b ∈ Λ0 such that

∆Iabγevent=a = ∆I
abf (x) ,

∆Iabγevent=b = ∆I
abg (x) ,

(119)

where

γevent (x) = Γeven (x, t) , Γeven : X × Iab → Y,
Iab = [a, b] , ∆Iab = b− a.(120)

Definition 37. An odd semi-homotopy between two supermaps f :
X → Y and g : X → Y is a noninvertible (in general) mapping X → Y
depending on a nilpotent odd parameter τ ∈ Λ1 and two odd constants
µ, ν ∈ Λ1 such that

∆Iαβγoddτ=α = ∆Iαβf (x) ,
∆Iαβγoddτ=β = ∆Iαβg (x) .(121)

γoddτ (x) = Γ
odd (x, τ) ,Γodd : X × Iαβ → Y,

Iαβ = [α, β] , ∆Iαβ = β − α.(122)

Remark. In (120) and (122) Iab and Iαβ are not intervals in any sense,
because among bodyless variables there is no possibility to establish an
order relation [13, 14, 75], and so ∆Iab and ∆Iαβ are only notations.
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Nevertheless, we can give an example of an analog of the average
(118) for an odd semi-homotopy

(β − α) γoddτ (x) = (β − τ) f (x) + (τ − α) g (x)(123)

which can satisfy some supersmooth conditions.

Remark. In (119) and (121) it is not possible to cancel the left and
right hand parts by Iab and Iαβ correspondingly, because the solutions
for semi-homotopies γevent and γoddτ are viewed as equivalence relations.
This is clearly seen from (123) where the division by (β − α) is impos-
sible, nevertheless a solution for γoddτ (x) can exist.

The most important property of semi-homotopies is their possible
noninvertibility which follows from the nilpotency of t and τ and the
definitions (119) and (121). Therefore, Y cannot be a supermanifold,
it can be a semi-supermanifold only.

Conjecture 38. It can be assumed that semi-homotopies play the same
or similar role in the study of continuous properties and classification
of semi-supermanifolds, as the role which play ordinary homotopies for
ordinary manifolds.

So that it is worthwhile to study their properties thoroughly and in
more detail, which will be done elsewhere.
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